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Dispersive 

S U M M A R Y  
The validity of an approximation ~0 of one of the solutions c~ of a set of two linear coupled dispersive wave equations 
has been discussed. % is the solution of a linear Korteweg-de Vries equation and satisfies the same initial condition 
as a. It is shown that for square integrable solutions having a spectral range not  exceeding [ - A, A] the approximation 
is useful if A 5 #2 t 4 1  in the sense that I1~- m011 (t) ~ I1~11 (t) (L2-norm)./~ is a measure for the dispersion. The approxima- 
tion fails in that sense as t--+ oo, Some remarks to a similar nonlinear problem are made. 

1. Introduction 

In two papers, [1] and [2], L. J. F. Broer and the present author have considered a set of two 
linear coupled dissipative wave equations. We were interested especially in the range of validity 
of an approximation of this set applying to a certain class of initial value problems. The ap- 
proximation "leads" to a linear Burgers' equation. In this paper, a similar approximation for 
a set of linear dispersive wave equations will be treated. This set is given by 

= . . . .  (1) 

fi, _ f i ~  = # (~ + fl) . . . .  (2) 

where # is a positive constant and the subscript t (or x) denotes partial differentiation with 
respect to t ( x ) .  

An example of such a set is furnished by an intermediate representation of the equations 
describing the longitudinal motion of an infinite chain of identical masses and springs. By an 
intermediate representation we mean a representation "between" the exact continuum re- 
presentation and the lowest continuum limit (cf. [3]). It is given by 

a2 c 2 
u ,  = c2u~x + ~ -  uxx~.x , (3) 

where a is the lattice constant and c is the propagation speed of waves in the lowest continuum 
limit, i.e. a--*0. 

For reasons of uniqueness of the exact continuum representation (see [3]), it is necessary that 
u is square integrable and has a spectral range not exceeding [ - ~ a - 1 ,  zca-1]. Then, as is 
shown in [3] too, stability is also assured. 

Substituting ot = - ut + cux,  fl = ut + cux  and putting c = 1 (which can be done without any loss 
of generality), from (3)we find (1) and (2) with #=a2/24. 

The approximation we shall study applies to the class of initial ;r problems 

(x, 0) = f ( x ) ,  (4) 

f l (x ,  0) = o .  (5) 

When # = 0, it is seen that (2) is satisfied identically. Then (1) becomes a first order equation 
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196 M. F. H. Schuurmans 

in c~, which is easily solved. The resultant solution is a simple wave solution for the hyperbolic 
set obtained by putting/~ = 0. 

Now, the approximation, which as in [1] and [2] will be called the simple wave approxima- 
tion henceforth, is based on the assumption that, when the initial conditions (4) and (5) are 
prescribed for the equations (1) and (2) with # small but not zero,/3 will be negligible, at any 
rate for some finite interval of time. In this way one obtains from (1) 

et + ex = - #C~=x . (6) 

This method of approximation has been used by Zabusky [4] in his theory of wave propaga- 
tion in a nonlinear one-dimensional lattice. He obtains the Korteweg-de Vries (KdV) equation. 
(6) is the linearised form of that equation. 

Now, the problem is that/3 will grow slowly from zero and therefore it is not at all obvious 
that c~ satisfies (6) for longer intervals of time. In section 4 the range of validity of the simple wave 
approximation and an expansion of e and/3 will be considered. Some mathematical notations 
and the representations of the solutions ~,/3 and e0 needed there, will be given in sections 2 and 
3. % is the solution of (6) subject to (4). The situation as t-+ oo is discussed in section 5 and the 
last section is devoted to some remarks concerning a similar problem for nonlinear equations. 

2. Mathematical Notations 

R is the interval ( -0% oo) of the real numbers. Consider scalar-valued complex functions 
u (x) defined on R. 

L2 (R) is a Hilbert-space containing all square integrable functions on R with inner product 
( , ) a n d n o r m [ I  ll defined by 

(u,  v) = ; Itutl = (u, u ? ,  --oo 
where u* is the complex conjugate of u. 

The space La2 (R) is a Hilbert-space containing all functions u eL2 (R) of which the Fourier 
transform ~ (k) defined by 

~(k)= f~o~ u(x) e x p ( - i k x ) d x  

vanishes identically outside a finite interval [ - A ,  A] (A eR). 
The inner product ( , )R,A ~nd norm I1 IIR,~ are defined by 

f Ctj (u, V)R,A = u*(x )v (x )dx  ; HUlIR,  = (u, 
- - o 0  

Where not stated otherwise all integrations are in the sense of Lebesque. 

3. L~(R) Solutions 

Let f~LA(R) .  Assume, for reasons of uniqueness of the exact continuum representation (see 
section 1 and [3]), A < �89 (6/0 ~ henceforth. As may be verified now easily, c~ and/3 are given by 

= 2~z _~ 1 + -A - 4 ~ - J I K  ) e x p / m x -  0 )  

1 
+ ~ m k  f ( k  ) e x p ( i k x - i c o t ) d k  

where 

(k) = k (1 - 2~k2) ~ 

(2) 
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On a simple wave approximation of  a set of  linear dispersive wave equations 197 

and the numbers  1 and 2 through the integration symbol  mean  integrat ion in the first-  respect- 
ively second sheet of the complex k--plane.  The first sheet is defined by 

o (k) 
lim - - ix/(2#) 

and the second by 

(0 < arg k < 7 0 

 o(k) 
lim - ix/(2#) (0 < arg k_< =) 

Finally 

1 f A f (k)  e x p ( i k x - i k t + i # k 3 t )  dk ~XO ~ ~ _ (3) 

4. The Validity of the Simple Wave Approximation 

4.1. Periodic solutions 

Consider  the periodic initial condit ion 

f (x) = exp(ikl  x ) 

where k l e R  and Ikll < �89 -~-. 
The  solutions e, fl and % may formally be found by substituting f ( k ) =  2rc6 ( k - k  l) in (3.1), 

(3.2) and (3.3). Therefore  

(1 + c) 2 (1 - e) 2 
- 4c exp ( i kx - i kc t )  4c exp( ikx+ikc t ) ,  (1) 

1--C 2 C2--1 
fi - 4c exp ( i kx - i kc t )  + ~ exp ( ikx+ikc t ) ,  (2) 

c% = exp (ikx - ikt + i#k 3 t) , 

where 

c (k) = I(1 - 2#k2)~1 

and the subscript 1 has been omit ted again. 
The formulae (1) and (2) clearly demonst ra te  the development  of left- and right moving waves, 

whereas eo consists of a right travelling wave only. 
Substi tut ion of sin (kct) = 1/2i [exp ( ike t ) -  e x p ( -  ikct)] in (1) and (2) leads to 

( 1 - c )  z 
ct = exp (ikx - i kc t ) -  �89 i - - - -  sin (kct) exp (ikx) , 

c 

e2--1 
fi = �89 i - -  sin (kct) exp (ikx), 

c 

showing that  a may  also be seen as a superposi t ion of a right moving- and a standing, fl as a 
pure standing wave. Expanding ( 1 -  2#k2) } a round  k = 0 gives 

c~ = [1 + �89 +. . . ]  exp [ i k x - i k t  + i#k3t] + 

+ [ - � 8 9  4 sin(kt) + . . . ]  exp (ikx). 

F r o m  this equat ion we infer that, if #2 [k[St< 1, 

I - ol < I%1 = 1 ,  (3) 
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198 M .  F. H.  Schuurmans  

so we may speak of a good simple wave approximation in that sense. 
If #k 2 ~ 1, the left travelling part  of the a-mode is still small compared with the remaining 

part  as t--* or. However, the difference between the phases of a's right moving part  and a o may 
be large and therefore (3) fails to hold. If one is not interested in the relative phases mentioned, 
as is often the case in dealing with periodic waves, one may  still speak of a useful approximation. 
A similar problem will arise in dealing with 122 (R) solutions. 

4.2. Expans ion  in a series o f  122 (R) solut ions 

To get some more insight in the character of solutions of equations like (1.1) and (1.2), one often 
uses expansions in a series. We shall construct such an expansion of a, taking as the first term 
in the series a o. The method we shall use is entirely similar to that used in [1], therefore all 
details will be stripped. Let f~La2 (R). Introduce the operators 

8 8 8 3 
M = ~-~ + ~x + 12 8x 3 '  

8 0 8 3 
N -  8t 8X 12 8X 3 ' 

Then, (1.1) and (1.2) become 

Ma  = - ~fi . . . .  

Nfi = #a . . . .  

SO 

83 86a 
M N a  = - t l-~X 3 N f l  = - I  22 8x  6 , 

which implies that a and fl satisfy 

La = -122 ~6a 

Lfl  = _ # 2  86fl 
OX 6 

respectively. 
L is given by 

82 82 84 _ 122 06 
L - 8t 2 8x  2 212 ~x  4 8x  ~ . 

The initial data become 

(4) 

a (x, O) = f ( x ) ,  

at(x,  O)= - d f ( x )  
dx 

(x, o) = o ,  

d 3 f ( x )  
fit(X, O) = # dx  3 

dV(x) j 
- - - - #  dx  3 , 

The solution of (4) and (5) satisfies 

a = a 0 + Aa ,  

(5) 

(6) 
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On a simple wave approximation of  a set of  linear dispersive wave equations 199 

where 

t sin i  
A~ = ~ dr dkkS~(k,  ~) 

- a 1 - -  # k  2 

In a similar way, we find that fl satisfies 

fi = #fl, + Af t ,  (7) 

where 

- 1 f a ik3f(k  ) s i n [ ( k - # k 3 ) t ]  
fil = ~ .p -a  k _ # k  3 exp( ikx)dk  . 

(6) and (7) may be solved by means of iteration: 

(~(0) ~ r , 

0~(2n) ~--_ # -  2 AO:(2n - 2),  (8) 

/~(1) =/~,,  

fl(2,- 1) = # -  ZAfi(2,- 3) (n = 1, 2 . . . .  ). 

Now, starting from (8) it may be shown, similar as was done in [1-1 and choosing the function 
q2(k, t) used there equal to 

I - 1 exp (1 - #k2) 2 e~- t , 

that, for all finite t > 0,  
N 

#2n ~(2n) 

n=0 

converges to ~, 
N 

#2n+ 1/~(2n+ 1) 

n=0 

converges to fi as N +  c~ in the sense of the I2 2 (R) norm. Furthermore 

-- = ~ - ~  ~; ~.I ~ II~IIR,A . (9) 
n=0 R,A n=N+l  

4.3. The simple wave approximation 

We shall call ao ~/22 (R) a good simple wave approximation to 7 ~/22 (R) in the interval of time 
[tl, t2] if and only if for every t e[ t l ,  t2] 

According to (9), (10) is satisfied for t~[0, T] where # 2 A S T ~  1. This result is entirely 
similar to that found in case of periodic solutions discussed in section 4.2. Now, we shall show 
that (10) is certainly not satisfied for all/22 (R) solutions as t ~  Go. This is in constrast with the 
result we found in [1] for the simple wave approximation of the dissipative set of equations. 

By using Parseval's theorem we find from (3.1), (3.2) and (3.3) 

[1~- ~ol[~,A = 2 [i~oll~,a + 11/~l12,a+ 

+ ~ -4 - (k+~ , ) :  cos[(~,-~Oo)t] + (k-o~) 2 cos[(o)+O,o)t]} ~ ly12 dk (11) 
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200 M. F. H. Schuurmans 

where 

coo = k -  #k 3 , 

i Ilflll,~,~ 1 ( k 2 -  co2) 2 = ~  _a 4k2co 2 sin2(cot)lfl 2dk. 

In these formulae co will be chosen in the first sheet of the complex k-plane. We may also write 

1 i ~  (k2-co2)2 1 5~ (k2-co2)2 
Ilflll~,~ = ~  A 8k2co2 I f l2dk--2~ A 8k2c02 cos (2cot)I f]  2 dk.  (12) 

co and co+co o may have two-, o - c o  o three points of stationary phase for k e [ - A ,  A]. They 
are located symmetrically with respect to k = 0. 

Assuming thatf(k)  is of bounded variation in [ -  A, A], we find by applying the method of 
stationary phase to (11) and (12) (Lauwerier [5]) and using the lemma of Riemann-Lebesque 

lim I[oe- c%[[~,a 2 1 t "A (k2 - co2) 2 
=211fllR,a + ~ .  -a 8k2co2 If l2dk" 

t ~ o o  ~, 

It is thus proved that (10) does not hold for all LA2 (R) solutions as t ~  m. The result is due to 
the oscillatory character of the solution tbr large t and will become more clear in the next 
section. 

5. A s y m p t o t i c  Behaviour  as t -~  

Let J~ L~ (R) and f(k)  analytic in ( - A, A). Write 

0{ ~ -  0{ 1 " 4 - ( ~ 2  , 

where 

eJ = ~ 4--ink- f (k)  exp [ih (k, ~)t] dk (] = 1, 2), 

h (k, ~) = k~ - co (k), 

~ = x t  - 1  . 

We shall study the asymptotic behaviour of ~ as t ~  oo by means of the method of stationary 
phase. The function e2 may be treated in a similar way. 

Let, from now on until stated otherwise, all functions defined in the k-plane, be defined in the 
first sheet of that plane. Let e and 6 be positive, but arbitrary small, numbers. The points of 
stationary phase of h(k, ~) are solutions of 

= ~(k), 

where the group velocity v(k)= dco/dk is given by 

v (k) = (1 - 4/~k 2) (1 - 2 tck 2 ) - ~-. 

If v(A)<= r  1, two such points exist (say) k(r and -k(~)(k  =>0). Outside that range of 
~-values there is none. So, if - oo < ~ < v (A)-  ~ or 1 + e =< ~ < oo we find by means of partial 
integration : 

[A + co(a)]e {f(A)e"tAx - o,,A)a + f ( - - A ) e - 4 A x  - e ) ( A ) t ]  } "4-0 (t-2)(t--+ 00). (1) 
0~1 = 87tiAco(A)[~-v(A)]t 
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On a simple wave approximation of a set of linear dispersive wave equations 201 

According to Copson [6], the method of stationary phase yields, if v(A)+ 3< ~ < 1-~, 

cq = [-27cv'(k)t] -~ [k+c~ {f(fc)e it~ TM ; ~14j + 
4o5k 

+f(-fc)e it~<x-<r,t+,~i41} +O(t-1)(t__.oo), (2) 

where c~ = co (k) and v' (k) is the first derivative of v (k). 
When ~ ~ v (A), we have f [ ~  A. Therefore, the domain v (k ) -  6 < ~ < v (k) + 6 has been omitted 

from the range of i-values. Another method is necessary in that case. ttowever, as these values 
of ~ are relatively unimportant, we shall not proceed in that direction. 

As ~ 1 ,  v'(k)~O. So, only if f ( 0 ) = 0  is satisfied, (1) may be used for v(A)+6< 4< 1. Then, 
thanks to the analyticity o f f  in a vicinity of k--0, f (k)--O(k)  as k~0 .  

Now, let f(0) r 0. 

Theorem 1. 
Define t / = ~ -  1. Let ]t/tl < 1. As t~oo, 

cq =f(O)(3#t)-~Ai [(3#t) - t  t/t] + O(t-~), 

where the Airy-function Ai(x) is defined by 

(3) 

Ai(x) 1 .f ~176 = - -  c o s ( l y 3 + x y ) d y .  
7Z 0 

Proof 
f(k) is regular for ]kl < A. Split the interval of integration in three parts: [ - A ,  - p ) ,  [ - p ,  p] 
and (p, A] where 0 < p < A. By means of partial integration we see that the contributions of the 
first- and third interval are O(t-1) as t~c~ .  

Introduce a new variable u by means of 

h(k, 4) = tlU+ #U 3. 

If t/= 0 this equation has one, otherwise three solutions 

k = ~ b,u", 
n = l  

all regular in a vicinity of u = 0. 
Choose that solution for which ba is real, so bl = 1. 
It follows that 

(k+co)2y(k) dk ~, c,u" 
4 ~  )uu -- ,=o ' 

where Co =f(0).  Write 

(k + co) 2 f(k) dk 
= f ( o )  + 

so, as t~oo ,  

~ = ~2~ _q {f(O)+u~P(u)} exp[iurlt+i#u3t]du+O(t -1) , (4) 

where 

q = u(p). 

We may write (4) in the form 
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202 M.  F. H. Schuurmans 

~1 = e x p [ i u t / t + i l m 3 t ] d u + I + O ( t  - ' )  ( t ~ o o ) ,  
- - o 0  

where 

f 1 q uTJ(u) exp[iut / t+i l~u3t]d u _ + exp[ iu t / t+i#u3t]du  " 
I - = ~  - q  -oo  q 

In the appendix it is proved that I = 0 (t -~) as t--* oo. This proves the theorem. 
The theorem gives information about the asymptotic behaviour in the shaded region of 

fig. 1. 
Still, we don't have information about the regions A and B. Most important of course is A. 

Figure 1. 
~ X 
v 

Theorem 2. 
As t--+oo, the range o f  validity of(2) and (3) can be extended to A. 

Proof  
We shall demonstrate that formal expansions of (2) and (3) fit together in A. Let t/t < 0. Expand 
with respect to large t/, in particular (t f ixed)- t/t (3#t) -~ >> 1. From Abramowitz and Stegun [7] 
we obtain 

41 A i ( - z )  . . . .  sm z" O(z - �88  

as z-~oo. Using this result we find from (3) as t--+oo, - t / t ~ o o  : 

~1 ~f(O)(-3rc2t/#t2) -~ sin - ~t/ t + . (s) 

Expand all quantities in (2) for small t/. We find as t/-o0 

E ~ - - t /  ~, v , (~ )~_2(_3#q) �89  ht 2t/t 

and so, for t/~0, t--.oo, (5) may be deduced again. This proves the theorem. 
Speaking in terms of singular perturbation theory one may call (2) the outer- and (3) the 

inner solution. Then, t/is interpreted as the large outer- and small inner variable. In fact we 
have made an outer expansion of the inner solution and the reverse and demonstrated they fit 
together (Kaplun [8]). 

If one is able to construct asymptotic expansions of ~x for ]4 - 1[ < e, It/t[ < 1 and for 1 + e < 
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< o% it must surely be possible to fit them together in B. However. this leads to severe 
mathematical  difficulties lying beyond the scope of this paper. 

For e 2 we also find (1) and (2), but now all functions are defined in the second sheet of the 
k-plane*. As (o~+k)2/~ok=O(k 4) as [kl~0 in that sheet, (1) holds for v(A)+6< ~< or.) and 
- o e  < ~ < - 1 ,  (2) for - 1  < ~ __< v (A) -  6. Now, we may sketch the wave phenomenon. 

Figure 2. f(k) = 1 (Ikl ~ A), A < 1 /~  vi(A) = (1-4/tAZ)/ll-2#A2)41. 

The front of the right travelling part  of the e-wave is formed by the "Airy wave". Such a wave 
may described by a carrier wave which is amplitude modulated. However, the carrier wave has 
a wavelength infinitely longer than that of the modulation. This kind of waves also constitutes 
the so called tidal waves. The steepness of the front of the Airy wave and the "wavelength" 
directly behind the front increase as the cube root of t. 

1 o~ o 

Figure 3. f(k)= l(Ik[< A), A<(3#) ~, v2(A)= 1-3/~A 2. 

The asymptotic behaviour of e o can be described in a similar way. The result is sketched in 
fig. 3. It  turns out that if #Z] 2 <~ 1, e and e o resemble each other for x > 0 in the sense that local 
amplitude and wavelength only slightly differ. Then, the left moving part  of the e-mode is 
small (in the maximum norm) compared with the right moving part. Therefore, in that sense, 
one may call e o a good approximation of e as t--* oo. This result resembles that of section 4.2 
very much. This section also explains the remark made at the end of section 4.3. 

6. Some Critical Remarks on a Nonlinear Case 

In this section we want to devote some attention to a simple wave approximation of a set of 
nonlinear equations. Let that set be given by 

e ,+  [1 +a(e+/~)]  e x = - p ( e + f l ) x x x ,  (1) 

E1 + = . . . .  (2)  

and the initial conditions by (1.4) and (1.5). 
Then, by a similar reasoning as used in section 1, we may argue that for some finite interval 

of time the behaviour of the e-mode approximately is described by the solution e o of 

* of course,//is now the negative solution of ~=v(k). 

Journal of Engineerin 9 Math., Vol. 5 (1971) 195-205 



204 

O~Ot Jr- O;Ox ~-  ~0~ 0 0~Ox : - -  #O~Oxxx , 

~o (x, O) = f ( x ) .  

We suppose again that feL~2 (R). 

M. F. H. Schuurmans 

(3) 
(4) 

Equations (l) and (2) are used by Zabusky [4] as an intermediate representation for the 
equations describing the behaviour of a nonlinear one-dimensional lattice. Then, by the further 
approximation indicated, he finds (3), which is the KdV equation. This equation has been 
studied by him and several other authors [9, 10, 11] extensively. It is also used as a long wave- 
length approximation in various fields of physics such as the theory of cold plasmas and shallow 
water theory (see [11, 12, 13]). 

Here we want to make some remarks on equations (1) and (2) and the corresponding simple 
wave approximation. First, it is not clear at all whether the equations (1) and (2) subject to (1.4) 
and (1.5) have stable solutions. The solution c% of(3) subject to (4) is stable. By stability we mean 
that a positive definite norm for the solution exists such that, uniformly with respect to time, 
it is bounded in terms of the corresponding norms of the initial conditions. (1.1) and (1.2) gave 
rise to the same problem. However, in that case, stability is assured due to the boundedness of 
the spectral range of the solutions (see [3]). The solutions of(l)  and (2) subject to (1.4) and (1.5) 
have an unbounded spectral range for each t > 0. 

This unboundedness also leads to the remark that the simple wave approximation probably 
will break down even faster than in the linear case. However, one should be very careful stating 
that conjecture as, especially for large times t, the solution of the KdV equation (3) subject to 
(4) is of an entirely different character than that of the linearised version (l.6). The non-linear 
solution consists of solitons which are steady progressive solutions of (3). 

They result from a balance between the dispersive- and nonlinear effects. Nevertheless, when 
we are far  before breakdown time, that is the time at which the solution of(3) where # = 0 starts 
developing a shock wave, the solution of (3) and its linear version probably will look very much 
alike (cf. [4]). In that case, the conjecture made above, presumably is useful. 

Appendix 

We shall prove that I, defined in section 4, equals O(t 3) as t~oo.  Denoting 

P(u; tlt, #t) = exp[itltu+ i#tu 3] 

and writing 

u (u) = u + u2z( ), 

we have 

I = f s  uPdu - ~ + [ f (O)+clu]Pdu + ~ -q 
--o0 q 

Choose q=< 1. Now, using partial integration twice 

i ~ [ f (  !~ icltlt 3~pt O)+clu]Pdu < du + 
q q U 

+ I f (o ) l+ lq[q+  f ~ 1 7 6  
3#tq 2 q \ u 3 

< [Cl[]r/t[~ 1 (~[/itlt 

+ 

el r du < 
u 2 + u 2 / = 

3  tdu + 

Ic,[ [31f(0)[§ < [3]f(0)[+2[c1[] + _  
3q 2#t 3q 2#t 3q4#2t 2 �9 

(1) 
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In a similar way, we may estimate 

-q [ f (0 )+  ClU] e d u .  
J - o o  

By partial integration we also find 

u2)c(u)Pdu < max [z(q)l q --q u = -- + q  ~ ~- --q # l t  X(u) + du < 

< constant. (3#0-1 . 

At this place, the reason for the further splitting (1) becomes clear. Upon partial integration of 

f q 71( )Pd U U U ,  
. - q  

we would have introduced a pole in the new integrand. 
Finally 

f up(u; [d i(O] 2re -o~ rlt' I~t )du=-i (3#t ) -~[_  d~ J~=(3.t)-l/3.t 

from which the statement made at the beginning of this appendix immediately follows. 
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